

A Distributed Real-Time Framework For Dynamic Management

Of Heterogeneous Co-simulations

Jean-François Cécile, Loic Schoen, Vincent Lapointe,
Alexandre Abreu, Jean Bélanger

Opal-RT Technologies Inc.

1751 Richardson, Suite 2525
Montréal, Québec, Canada, H3K 1G6

jean-francois.cecile@opal-rt.com

Keywords: Real-time, heterogenous, co-simulation, RT-LAB, UAV

ABSTRACT
Simulation of complex systems usually requires
that heterogeneous models be integrated into a
single simulation environment. Because these
models are often developed by different teams,
or depend on various commercial simulation
tools (such as SimulinkTM, DymolaTM or
SystemBuildTM), considerable effort is expended
in configuring the corresponding components
into a cohesive co-simulation.

As part of its research and development efforts,
Opal-RT has developed RT-LAB Orchestra, a
software application that facilitates integration
and interoperability between co-simulation
components. RT-LAB Orchestra is an
application-level data communication layer that
sits on top of Opal-RT’s RTLAB framework, a
proven real-time architecture for distributed
simulations.

RT-LAB Orchestra provides an application
programming interface (API) that implements a
data-centered communication mechanism
between co-simulation components. Using the
RT-LAB Orchestra API, components connect to
the RTLAB framework and exchange data with
other co-simulation components, synchronously
or asynchronously. Prior to its connection, the
data exchange for a co-simulation component is
configured through a graphical user interface that
controls XML connection elements.

A case-study is presented that models the
formation flight of Unmanned Aerial Vehicles

(UAVs). RT-LAB Orchestra’s dynamic
connection capabilities are used to model how
the overall behavior of a flight is affected by the
removal or addition of UAVs to an existing
formation.

1. INTRODUCTION
Heterogeneous co-simulation consists of
software components written in different
programming languages, or generated by various
simulation tools, and interacting together to form
a cohesive simulation environment. Co-
simulating is often required because simulation
designers need to integrate components
developed by different teams, or because
individual components are best developed with a
specific programming language or tool [1]. For
example, Matlab/SimulinkTM, DymolaTM or
MATRIXxTM are widely used commercial tools
for model-based design, while embedded code is
often written in C or C++. While co-simulations
present advantages, such as encouraging code re-
use, they are usually large and complex. As a
result, high performance, scalable and real-time
simulations are difficult to achieve. This paper
presents a software framework for heterogeneous
co-simulations, intended to work under real-time
constraints.

The system, named RT-LAB Orchestra, provides
a communication layer that sits on top of the RT-
LAB framework, a real-time infrastructure for
distributed simulations [2], which typically
allows simulation time steps under 10 us. RT-
LAB takes advantage of the considerable
computing power available through clusters of

mailto:jean-francois.cecile@opal-rt.com

affordable PCs, connected by high-performance
communication links such as InfiniBand [3].
Using the connectivity features provided by RT-
LAB Orchestra, heterogeneous software
components exchange simulation data with an
RT-LAB framework and hence benefit from the
array of facilities available through the RT-LAB
infrastructure, such as multi-rate capabilities or
extensive support for hardware in the loop [2].

The rest of this paper is structured as follows. In
the next section, related work is presented and
compared to RT-LAB Orchestra. Then
Orchestra’s software architecture is described,
and its advantages discussed. As an application
of RT-LAB Orchestra’s connectivity features, a
distributed real-time simuLation of Unmanned
Aerial Vehicles (UAVs) has been carried out.
Simulation results are presented that illustrate a
data exchange between an RT-LAB framework
and C-code software processes. These data
demonstrate the dynamic connection
management of Orchestra, and its usefulness in
terms of rapid prototyping and scalability.

2. RELATED WORK
Technologies based on the Data Distribution
Services for Real-Time Systems (DDS) are built
on similar concepts to RT-LAB Orchestra. DDS
is a specification written by the Object
Management Group (OMG) that provides a
standardized way of developing distributed real-
time applications [4]. DDS provides an
Application Programming Interface (API) that
developers can use to build a distributed
application, without defining how the
communication between distributed nodes is
implemented. DDS relies on the OMG Interface
Definition Language (IDL) to define Quality of
Service (QoS) parameters that correspond to
various requirements attached to the data
exchanged within a distributed system. IDL’s
syntax is similar to C++ [4].
The DDS API uses a publish/subscribe
mechanism, data-centric communication system.
DDS publishers and subscribers are distributed
objects that notify readers and writers of the
availability of data. The data is accessed through
a data space, or domain, and readers/writers
objects that are registered within a domain are
referred to as domain participants. The
publish/subscribe approach is preferred to the
more classic client/server mechanism, such as
the one used by CORBA, because it has no
centralized server, therefore no performance

bottleneck. Also this mechanism has no single
point of failure, and it potentially displays better
scalability [5]. ORTE (OCERA Real Time
Ethernet) is an open-source implementation of a
real-time communication protocol built on top of
an UDP stack that is also based on a
publish/subscribe mechanism [6].

Orchestra is based on a data-centric simulation
data exchange comparable to the mechanism
defined by the DDS. However, in developing
RT-LAB Orchestra our intent was not to
implement an abstract specification such as
DDS, but rather to enhance an existing and
proven real-time framework, RT-LAB, by
adding connectivity features that open up the
framework to heterogeneous software
components.

3. ORCHESTRA’S
ARCHITECTURE
The core of Orchestra’s architecture is a
configurable communication layer that sits on
top of the RTLAB framework, whose role is to
provide a transport layer between distributed
simulation nodes, and a real-time scheduler for
the co-simulation, see Figure 1. The
communication layer consists of a set of shared-
memory segments, one per domain. As a result,
domain participants are co-located within the
same RT-LAB simulation node.
Domain participants exchange simulation data
via the communication layer by calling functions
of the Orchestra RTAPI, described below.
Orchestra distinguishes two types of domain
participants, namely the RT-LAB framework
itself, and external components. Logically, an
external component is a software process that is
not part of the Simulink-based model that the
RTLAB framework instantiates for real-time
execution. Physically, an external component is
a cohesive software entity that embeds calls to
the RTAPI, and that is compiled and linked to
form a stand-alone process. A single domain
participant acts as a reader or a writer by using
the RTAPI to send or receive data respectively.
Orchestra is designed to be extensible; this is
accomplished by clearly decoupling the RTAPI
from its implementation on the RT-LAB
framework side. As a result, different domains
could possibly rely on separate implementations
of the communication layer. For example, we
could envision that the communication layer for
a given domain be implemented as an High

Level Architecture (HLA) federate that
exchanges data through an HLA Runtime Time
Infrastructure (RTI) [7].

FW , IB , Shared Mem , Ethernet

RT-LAB fram ework

RT-API

RT-LAB
subsystem

Simulation node

C
code Dym ola Sim ulink

RT-API

RT-LAB
subsystem

Sim ulation node

C
code

Dym ola Sim ulink

External Com ponents External Com ponents

Figure 1. RT-LAB Orchestra’s architecture.

4. COMMUNICATION LAYER
CONFIGURATION
The Orchestra communication layer is
configurable offline through a Data Description
File (DDF). A DDF is an eXtended Markup
Language (XML) decomposed into a four-level
hierarchy. Part of a sample DDF is shown in
Figure 2.

Figure 2. Section of a sample Data Description
File.
The top element is the <orchestra> tag; this
element serves as a place holder that includes all

the simulation data for a given co-simulation.
The next level down from the top element
contains a list of <domain> elements. An
Orchestra domain is a named set of uniquely
named data items to be exchanged between
participants, which is similar to the DDS concept
of data space. The <domain> element contains
various QoS elements that define the connection
policies applied by domain participants. The
QoS parameters corresponding to these elements
are:

• Synchronicity
This parameter can be either synchronous or
asynchronous. The asynchronous mode is
similar to the bucket mode described in [1].

• Writer Access Exclusivity
This parameter determines whether several
publishers can read to the same domain. Any
number of domain participants can subscribe to a
given domain at the same time.

• Writer Access Priority
This parameter determines whether an external
component needs to seed the data exchange
within a given domain, by publishing to the
domain first.
Other QoS parameters, such as deadline policies,
are configured through the Simulink-based RT-
LAB framework. For example, a deadline policy
is provided by the RT-LAB framework that
specifies the rate of execution for a given
simulation.

Each <domain> also contains a reader and a
writer block, which in turn contain a list of
named data items. The publisher/subscriber role
is defined vis-à-vis the RTLAB framework,
namely: data items in a publisher block are
written to a domain by the RT-LAB framework,
and therefore available for reading by an external
participant to the domain. Conversely, data
items in a subscriber block are written by an
external participant, and read by the RTLAB
framework. Data items are named identifiers
that map to numerical variables exchanged
within a domain.
Users not familiar with editing XML have the
option of using a graphical user interface
provided as part of RT-LAB Orchestra to create
a DDF. Figure 3 shows one of the panels of this
graphical user interface.

Figure 3. Graphical user interface used to create
an Orchestra DDF.

5. COMMUNICATION LAYER
ACCESS
External components participate to a domain
data exchange by embedding calls to the RTAPI,
a set of C-code functions distributed as part of
Orchestra. The data exchange is a data-centered
publish/subscribe mechanism, which means that
the data are referred to using named items,
without the need to specify another domain
participant explicitly. This mechanism allows

external components to send or receive data that
are part of a domain, regardless of which
component is actually connected to the RTLAB
framework. Simulation data are described in the
DDF processed by an RTLAB component at
simulation startup.
Prior to exchanging data, a connection to a
domain must be established by calling
RTConnect(). Disconnection from a domain is
achieved by calling the function RTDisconnect().
Data items are published (sent) and subscribed to
(received) by calling RTPublish() and
RTSubscribe() respectively, referring to data
items by name. The data exchange within a
domain can be synchronous or asynchronous, as
specified by the QoS defined in the DDF.
Synchronization is implemented through a
producer/consumer locking mechanism.

6. INTEGRATION WITH THE RT-
LAB TRANSPORT LAYER
RT-LAB users partition a Simulink [8] model to
form subsystems, then assign subsystems to
simulation nodes using a graphical user interface.
The Orchestra communication layer is integrated
to the RT-LAB framework through a library of
Simulink blocks that are dragged and dropped
into the Simulink model. These blocks are
referred to as proxy blocks because the RT-LAB
framework uses them as substitutes for external
components. For example, to permit the
connection of a C-code process to the RT-LAB
framework, a C-code Simulink block is added to
the model. Dymola blocks are currently part of
this library. Extending Orchestra’s connectivity
to other simulation tools simply amounts to
adding the corresponding blocks to the Orchestra
library. Once the path to a DDF is defined, and a
domain chosen, the data items inside the domain
are mapped to the inputs and outputs of the
proxy block.
A model is compiled and loaded onto a real-time
operating system such as QNX [9] or Linux
RedHawk [10]. During model initialization,
Orchestra validates the syntax and the semantics
of the DDF, then shared-memory segments are
allocated for every domain defined in the DDF.

7. UAV CO-SIMULATION
We have developed a multi-UAV co-simulation
as a sample application that takes advantage of
Orchestra’s connectivity features. Many
applications are possible, but this is a good
example of a research area that benefits from a
system such as Orchestra because autonomous

UAVs are often flown in formation, so
distributed architectures are well suited to
studying their interactions [11]. Also, fleets of
UAVs require real-time operating mode because
of the constraints resulting from the wide range
of priorities in the tasks they should perform [12,
13].
This multi-UAV co-simulation consists of 4
autonomous RT-LAB UAV models that send
position data to an RT-LAB framework. In
addition, C-code software processes, henceforth
“external code”, embeds calls to the RTAPI and
connect to the RT-LAB framework to obtain
samples of the UAV positions. Each UAV block
implementation is based on the Pioneer UAV
model developed using AeroLib, a library of
Simulink blocks developed by Opal-RT. The
Pioneer UAV model uses nine subsystems from
the aircraft dynamics, the main subsystems are
listed below with a brief description for each:
Aerodynamic Subsystem. This subsystem
calculates the aerodynamic forces and moments
acting on the aircraft, expressed in the body-
fixed reference frame, based on the flight
condition, aerodynamic coefficients and control
inputs.
Autopilot Subsystem. The Autopilot
Subsystem consists of a flight path tracking
system and a damper system. The flight path

tracking system tracks a series of waypoints
defined by latitude, longitude and altitude at
predefined airspeeds. A guidance system
converts the waypoints to a desired bearing,
altitude and cruise speed, and PID controllers
ensure that the appropriate control inputs are
generated to ensure tracking.
Equations of Motion Subsystem. This
subsystem implements the 6-DOF flight dynamic
equations of motion for the aircraft, based on the
forces and moments calculated by the
Aerodynamic Subsystem, the thrust calculated
by the Piston Engine Propeller Subsystem and
the mass properties of the aircraft.
Simple Controls Subsystem. This subsystem
models the actuator dynamics for the control
surfaces of the aircraft.

The four UAV models are identical in terms of
aircraft characteristics, but are offset in space.
For the demo, they follow a flight path defined
by a set of waypoints at predefined airspeeds
using an autopilot, and always maintain their
relative positions. The models are initialized in a
trimmed state. A UAV Simulink model is
shown in Figure 4.

Figure 4. UAV model used in the multi-UAV co-simulation.

The host machine on which the Simulink co-
simulation was developed is a PC running
Windows XP. Real-time code was generated by
the Simulink RTW code generator. The code is
then loaded onto a cluster of target PCs that run
the real-time Linux RedHawk operating system
[10]. Nodes in the clusters communicate through
an InfiniBand link. Data are retrieved from the
target nodes through a TCP/IP connection, and
displayed on the host machine using the X-Plane
visualization tool [14]. Dynamic connection/re-
connection of components is achieved through a
sequence of events automatically sent by running
a Python script.
Figure 5 shows the altitude variations of
simulated UAVs as a function of time, as well as
the effect of connection/disconnection requests
sent by the monitoring script to the UAV
models. The UAV dotted lines correspond to
altitudes computed by the UAV models. The
solid lines are the same altitudes published by

the UAV models, and read by the RT-LAB
framework. The broken and dotted lines diverge
when a UAV component sends a disconnection
request to the Orchestra communication layer by
calling the RTDisconnect() function of the
Orchestra RTAPI. As a result, the altitude read
by the framework remains level. When a
connection event is sent by the monitoring script
to the UAV model, the UAV component calls
the RTConnect() function of the RTAPI and, as
the published altitude varies again, the dotted
and solid lines merge. As the connection and
disconnection requests are received by the RT-
LAB framework, the number of connections is
retrieved from Orchestra and is displayed as a
real-time parameter of the co-simulation.
Figure 6 illustrates how heterogeneous domain
participants exchange simulation data within
Orchestra. The solid and dotted lines for the
UAV2 are similar to the ones shown in Figure 5.

Figure 5. Altitude variations computes by the UAV models as a function of time.

At time 60 s, a C-code external component sends
a connection request to Orchestra, and subscribes
(reads) the UAV2 altitude from the
corresponding domain, “multiuav_uav2”. At
time 80 s, another instance of the C-code
external component repeats the same sequence.
The

merged lines indicate that altitudes published by
the UAV model are read by both the external
components. Figure 6 also shows the number of
connected domain participants as a function of
time.

8. CONCLUSION
Orchestra is a real-time framework for
heterogeneous software co-simulations.
Orchestra provides an API based on a
publish/subscribe mechanism that heterogeneous
components use to send data to and receive data
from an RT-LAB framework. An example
application demonstrating the connectivity
features of RT-LAB Orchestra has been
presented, along with its dynamic connection

management capabilities. These capabilities are
useful for rapid prototyping as faulty
components can be removed from a co-
simulation, fixed, re-compiled and re-connected
without affecting other components.
Future work includes the implementation of QoS
policies to handle event-driven synchronization,
and support for exchange of data with composite
types.

Figure 6. Connection of heterogeneous domain participants to a UAV domain.

ACKNOWLEDGEMENTS
The authors would like to thank Dr. Ravi
Venugopal for enhancing the Pionner UAV
model so as to permit simulations of in formation
flights.

REFERENCES
[1] P. Bjureus and A. Jantsch, “Heterogeneous

System-Level Cosimulation with SDL and
Matlab, Electronic Chips & System Design
Languages”, Kluwer Academic Publisher,
2001.

[2] www.opal-rt.com
[3] http://www.infinibandta.org
[4] www.omg.org
[5] P. Eugster, P. Felber, R. Guerraoui, A.-M.

Kermarrec, “The Many Faces of

Publish/Subscribe”, ACM Computing
Surveys, Vol.35, No 2, 2003.

[6] http://www.ocera.org
[7] http://www.dmso.org
[8] http://www.mathworks.com
[9] http://www.qnx.com
[10] http://www.ccur.com
[11] P. Doherty, P. Haslum, F. Heintz, T. Mertz,

P. Nyblom, T. Person and B. Wingman, “A
Distributed Architecture for Autonomous
Unmanned Aerial Vehicle
Experimentation”, Proceedings of the 7th
international Symposium on Distributed
Autonomous Systems, 2004.

[12] W. Eui Hong, J. Shin Lee, L. Rai and S. Ju
Kang, “RT-Linux based Hard Real-Time
Software Architecture for Unmanned

http://www.opal-rt.com/
http://www.mathworks.com/
http://www.ccur.com/

Autonomous Helicopters”, 11th IEEE
International Conference on Embedded and
Real-Time Computing Systems and
Applications, 2005.

[13] N. Lechevin, C.A. Rabbath and P. Sicard,
"Stable Morphing of Unicycle Formations in
Translational Motion", To be published in
Proceedings of the American Control
Conference, 2006.

[14] http://www.xplane.com

	Keywords: Real-time, heterogenous, co-simulation, RT-LAB, UA
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	ORCHESTRA’S ARCHITECTURE
	COMMUNICATION LAYER CONFIGURATION
	COMMUNICATION LAYER ACCESS
	INTEGRATION WITH THE RT-LAB TRANSPORT LAYER
	UAV CO-SIMULATION
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

