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Occupational licensing has grown steadily in 
the United States since the 1950s, with nearly 
one-third of private sector workers currently in 
jobs covered by occupational licensing require-
ments (Kleiner and Krueger 2013). In many 
jurisdictions, taxi drivers are required to obtain 
an occupational license in order to transport pas-
sengers, and drivers are restricted from picking 
up passengers outside of the jurisdiction that 
issued their license. In addition, the number of 
taxi drivers is often limited by the number of 
medallions that are issued, and fares are often 
set by regulatory bodies. Although occupational 
licensing regulations can improve consumer 
safety and yield other benefits, they can also 
reduce the efficiency of the economy, raise costs 
for consumers, and lead to a misallocation of 
resources.

The innovation of ride sharing services, such 
as Uber and Lyft, which use  Internet-based 
mobile technology to match passengers and 
drivers, is providing unprecedented compe-
tition in the taxi industry. Weighted by hours 
worked, there were about half as many Uber and 
Lyft drivers as taxi and limo drivers operating 
in the United States at the end of 2015.1 This 
paper examines the efficiency of the ride sharing 

1 In 2015 there were nearly 500,000 taxi drivers and 
chauffeurs in the United States according to our tabulation of 
the Current Population Survey, and Uber and Lyft combined 
had nearly 500,000 active drivers. Uber drivers, however, 
work about half as many hours per week as taxi and limo 
drivers according to Hall and Krueger (2015). 

 service Uber by comparing the capacity utiliza-
tion rate of UberX drivers to that of taxi drivers.

Capacity utilization is measured either by the 
fraction of time that drivers have a  fare-paying 
passenger in the car or by the fraction of miles 
that drivers log in which a passenger is in the 
car. Because we are only able to obtain esti-
mates of capacity utilization for taxis for a hand-
ful of major cities—Boston, Los Angeles, New 
York, San Francisco, and Seattle—our estimates 
should be viewed as suggestive. Nonetheless, the 
results indicate that UberX drivers, on average, 
have a passenger in the car about half the time 
that they have their app turned on, and this aver-
age varies relatively little across cities, probably 
due to relatively elastic labor supply given the 
ease of entry and exit of Uber drivers at various 
times of the day. In contrast, taxi drivers have 
a passenger in the car an average of anywhere 
from 30 percent to 50 percent of the time they are 
working, depending on the city. Our results also 
point to higher productivity for UberX drivers 
than taxi drivers when the share of miles driven 
with a passenger in the car is used to measure 
capacity utilization. On average, the capacity 
utilization rate is 30 percent higher for UberX 
drivers than taxi drivers when measured by time, 
and 50 percent higher when measured by miles, 
although taxi data are not available to calculate 
both measures for the same set of cities.

Four factors likely contribute to the higher 
utilization rate of UberX drivers: (i) Uber’s 
more efficient  driver-passenger matching tech-
nology; (ii) Uber’s larger scale, which supports 
faster matches; (iii) inefficient taxi regulations; 
and (iv) Uber’s flexible labor supply model and 
surge pricing, which more closely match supply 
with demand throughout the day.

I. Assembling Data on Capacity Utilization Rates

Ideally, we would like to have data on the 
fraction of time in which taxi and Uber driv-
ers have a  fare-paying customer in their car 
each moment that they work. There is no  single 
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source of data for taxi drivers, however, so 
we must piece together information for cities 
where data are available. For New York City, 
we use  micro-level daily data on anonymized 
taxi drivers’ work hours and time with the 
meter running from the New York City Taxi 
and Limousine Commission (NYCTLC) for 
trips taken in 2013.2 For San Francisco, Vincent 
 Leah-Martin provided us with tabulations of 
similar  micro-level data that he obtained from 
one midsized taxi fleet.3 For Boston, the frac-
tion of total hours worked that taxi drivers had 
a passenger in their car was reported in the   
Nelson/Nygaard (2013; Figure  4–1) report 
for the City of Boston for three days in 2013.4 
Information on miles driven by taxi cabs is not 
available for these cities.

For two cities, Seattle and Los Angeles, we 
have information on miles driven (total and with 
a passenger) aggregated across all taxi drivers. 
Aggregate revenue miles and aggregate miles 
driven by taxi drivers are available for 2013 and 
2014 for Seattle from Soper (2015). For Los 
Angeles, comparable information at a monthly 
frequency from January 2009 to January 2015 
is available from the Los Angeles Department of 
Transportation (LADOT).

There are a variety of ways to compute the 
capacity utilization rate. First, consider a situ-
ation where we have access to  individual-level 
data on N drivers’ work hours in a given day, 
denoted   H i   , and the number of hours in which 
they had a  fare-paying passenger in the car, 
denoted   h i   . We can compute the average frac-
tion of time that a driver is working in which 
he or she has a passenger in the car, which we 
denote   f    h  :

(1)    f    h   = ∑(  h i   /  H i   )/N = ∑   f   i  
h  /N,

where   f   i  
h   is   h i   /  H i   , the capacity utilization rate of 

driver i on the day in question.

2 See Farber (2015) for a description of the dataset. 
3 See  Leah-Martin (2015) for further details on the data-

set. The data we report pertain to July, August, September, 
and October of 2013. 

4 The data were from credit card terminal data, which 
record information for every trip, regardless of whether a 
credit card was used. The dates were January 9, April 11, 
and July 13. The sample of data for Uber drivers correspond 
to the same days of the week (and proximity to the Boston 
Marathon, i.e., the Thursday before the marathon) for those 
months in 2015: January 14, April 16, and July 11. 

Alternatively, in some instances data on 
 passenger-fare hours aggregated across all 
 drivers and total work hours of taxi drivers are 
available. In these cases, we compute the aggre-
gate capacity utilization rate, denoted   F   h  :

(2)   F   h   = ∑   h i   / ∑   H i    = ∑   w i      f   i  
h  .

Notice that   F   h   is a weighted average of   f   i  
h  , where 

the weights,   w i   , are each driver’s share of total 
work hours,   H i   / ∑   H i   . If drivers’ hours do not 
vary much, or if driver hours and   f   i  

h   are weakly 
correlated, then   f    h   and   F   h   will be similar.

To compute capacity utilization rates with 
respect to miles driven, as opposed to time, we 
simply replace   h i    and   H i    with miles driven while 
a passenger is in the car and total miles driven 
in the day, denoted   m i    and   M i   , respectively. The 
only information we could obtain on capacity 
utilization rates for miles driven for taxi drivers 
is of the  F-type aggregate measure.

At our request, the Uber research staff kindly 
provided us with statistics on f and F based on 
Uber’s administrative database for Uber  drivers 
in the five cities for which we were able to col-
lect data on traditional taxi drivers. We focus on 
UberX drivers because that is the largest and 
fastest growing category of Uber drivers.5 Work 
time   H i    was defined as the total amount of time 
that a driver’s app was on, while   h i    was defined 
as the time in which a passenger was in the car. 
With the Uber data, it is possible to calculate 
capacity utilization by either f or F, which is 
fortunate because daily work hours vary more 
across Uber drivers than they do across taxi 
drivers, who typically work seven or eight hour 
shifts, or longer.

One difference between Uber drivers and taxi 
drivers is that Uber drivers are not restricted 
from picking up passengers in one particular 
jurisdiction. The sample of UberX drivers in 
each city consisted of those who picked up at 
least one passenger in the city during the day, 
and those drivers were followed throughout the 
day regardless of where else they might have 

5 To be precise, the sample consists of UberX, UberXL, 
UberPool, and UberSelect drivers. We refer to all drivers in 
these service categories as UberX drivers. UberBlack driv-
ers, who typically require a commercial driver’s license, are 
excluded. 
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traveled.6 As a practical matter, qualitatively 
similar results are obtained if the sample is 
limited to drivers whose first pickup was in the 
city. Because computing mileage driven is time 
intensive, a random sample of 2,000 drivers was 
selected for each city.7

Another issue concerns timing. One could 
argue that it is desirable to compare UberX and 
taxi drivers during the same period of time, or 
one could argue that it makes sense to compute 
the capacity utilization rate for taxis before Uber 
entered the market to assess the effect of taxi 
licensing and regulation, because the presence of 
Uber could have caused the productivity of taxi 
drivers to change. Regardless, as a practical mat-
ter we are limited by the data available. Due to 
lags in reporting, the taxi data are from an earlier 
year than the Uber data. The Uber data pertain to 
December 1, 2014 through December 1, 2015. 
For San Francisco the data were restricted to 
July through October 2015, to match the months 
of the taxi data, and for Boston the correspond-
ing days of the year were selected to match the 
taxi data. The fact that the taxi data pertain to a 
period before Uber made significant inroads into 
the market likely raises the capacity utilization 
rate for taxis compared to Uber drivers, as the 
taxis had less competition for passengers at that 
time.

II. Findings

Table 1 provides estimates of   f    h   and   F   h   for 
Uber in all five cities, three of which also have 
data for taxis. Figure 1 summarizes estimates 
of the  mileage-based capacity utilization mea-
sure (  F   m  ) for Los Angeles and Seattle, the only 
two cities for which we have been able to obtain 
information on taxi drivers’ miles.

Regardless of the measure used, the results 
show a clear pattern: UberX drivers have a sub-

6 One should also be aware that Uber drivers can simul-
taneously work for Lyft and other ride sharing services. 
Because Uber lacks information on whether UberX driv-
ers are providing rides to customers through Lyft or other 
 services, the Uber capacity utilization rate probably under-
states the actual rate that drivers achieve. 

7 More specifically, a day was defined as running from 
4 am to 4 am, and a random sample of driver days was 
selected each period. The periods were selected from 2015 
for the days and months corresponding to the available taxi 
data for Boston and San Francisco, or from December 1, 
2014 to December 1, 2015 for the other cities. 

stantially higher capacity utilization rate than 
do taxi drivers in every city except New York, 
where the utilization rates are very similar. In 
Boston, the  time-based capacity utilization 
rate   F   h   is 44 percent higher for UberX drivers 
than for taxi drivers, and in San Francisco it is 
41  percent higher. Notice also that   f    h   and   F   h   
are very similar where they both are available, 
consistent with there being little correlation 
between   f i    and   h i   . As a result, in San Francisco,   
f    h   is 43 percent higher for UberX drivers than 
for taxi drivers, very close to the differential for 
  F   H  , and in New York both ratios are close to par-
ity. Across the five cities, UberX drivers have a 
passenger in their car around half the time that 
they are working, whereas taxi drivers have a 
passenger in their car anywhere from 32 percent 
of the time in Boston to nearly half the time in 
New York City.

The  mileage-based capacity utilization rates 
(  F   m  ) tell a similar story.8 In Los Angeles, taxi 
drivers have a passenger in the car for 40.7 per-
cent of the miles they drive, while UberX driv-
ers have a passenger in the car for 64.2 percent 
of their miles, resulting in a 58 percent higher 

8 For Los Angeles taxi drivers,   F   m   is the average value of   
F   m   taken over the 24 months of 2013 and 2014. For Seattle,   
F   m   is the average of the 2013 and 2014 values. 

Table 1—Capacity Utilization Rate ( Percent of Work 
Hours with a Passenger) 

for Taxi and UberX Drivers, Select Cities

f F

Taxi UberX Taxi UberX

Boston NA 46.8 32.0 46.1
Los Angeles NA 51.7 NA 50.3
New York 48.3 50.9 49.5 51.2
San Francisco 38.4 54.9 38.5 54.3
Seattle NA 43.5 NA 43.6

Notes: f is the average across drivers. F is ratio of aggregate 
passenger hours to aggregate hours worked. Boston taxi data 
are average of three days in 2013, New York taxi data are 
for 2013, and San Francisco taxi data are for July–October 
2013; Uber data for Boston are for three corresponding days 
in 2015, Uber data for San Francisco are for July–October 
2015, and Uber data for all other cities are for the 12 months 
ending December 1, 2015.

Sources: Uber Technologies, Inc.; authors’ calculations 
using NYCTLC Microdata; Leah-Martin (2015); and 
Nelson/Nygaard (2013); see text for further details.
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capacity utilization rate for UberX drivers. In 
Seattle, UberX drivers achieve a 41 percent 
higher capacity utilization rate than taxis in 
terms of share of miles driven with a passenger 
in the car. Notice also that the capacity utiliza-
tion rates are generally higher when measured 
by miles than hours. Across the five cities, 
for example, for UberX drivers the average of 
  F   m   is 61.0 percent and the average of   F   h   is 49.1 
percent. (Unfortunately, no jurisdiction reports 
data that allow for the calculation of the capac-
ity utilization rate in miles and in hours for taxi 
drivers, but looking across cities it appears that   
F   m   is greater than   F   h   for taxis as well.) The 
 mileage-based measure of the capacity utiliza-
tion rate would be higher than the  time-based 
measure if, for example, drivers arrive early 
to pick up some passengers and wait for them 
(without turning on the meter), or if drivers park 
or drive more slowly in the interval between 
dropping off a passenger and picking up a new 
one, or if drivers take breaks during their shifts 
that are counted as work hours.

For taxis in Los Angeles and Seattle, we can 
look at variations in   F   m   over time. In Los Angeles 
the capacity utilization rate was relatively sta-
ble over time, only varying between 38.6 per-
cent and 42.8 percent in the months between 
January 2009 and January 2015. In Seattle, the 
rate mostly trended upward from 40.7 percent in 
2005 to 45.7 percent in 2013, before dropping to 

32.6 percent in 2014, perhaps because of com-
petition from Uber.

Lastly, Figure 2 presents the empirical cumu-
lative distribution functions of   f   i  

h   for taxi drivers 
and UberX drivers in San Francisco. Specifically, 
drivers are arrayed by the share of work hours 
they have a passenger in the car on the horizon-
tal axis, and the percent falling below each value 
is shown on the vertical axis. The differences in 
the mean capacity utilization rates are not driven 
by a small number of drivers. At all percentiles, 
the UberX drivers have a higher capacity uti-
lization rate than taxi drivers. Moreover, if we 
look at different time intervals of the day, UberX 
drivers in San Francisco have a higher utiliza-
tion rate than taxi drivers at all hours, with the 
narrowest gap between 4 pm and 8 pm.

III. Discussion

There are several possible reasons why UberX 
drivers may achieve significantly higher capac-
ity utilization rates than taxi drivers. First, Uber 
utilizes a more efficient  driver-passenger match-
ing technology based on mobile Internet tech-
nology and smart phones than do taxis, which 
typically rely on a  two-way radio dispatch sys-
tem developed in the 1940s or  sight-based street 
hailing. Second, in most cities Uber currently 
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the 12 months ending December 1, 2015; see text for fur-
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Sources: Uber Technologies, Inc.; LADOT; City of Seattle, 
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Figure 2. Cumulative Distribution Function of 
Percent of Work Hours with a Passenger for Taxi and 

UberX Drivers in San Francisco

Note: Taxi data are for July–October 2013, Uber data are for 
July–October 2015.

Sources: Data provided by Uber Technologies, Inc. and  
Leah-Martin (2015).
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has more driver partners on the road than the 
largest taxi cab company. Apart from the tech-
nology, there are network efficiencies from 
scale, as pure chance would likely result in an 
Uber driver being closer to a potential customer 
than a taxi driver from any particular company 
given the larger scale of Uber. Third, inefficient 
taxi licensing regulations can prevent taxi driv-
ers who drop off a customer in a jurisdiction out-
side of the one that granted their license from 
picking up another customer in that location. 
Fourth, Uber’s flexible labor supply model and 
surge pricing probably more closely matches 
supply with demand during peak demand hours 
and other hours of the day.

We cannot explore the importance of all of 
these factors, but we can explore aspects of 
some of them. First, for three cities—New York, 
Seattle, and Los Angeles—we have capacity uti-
lization rates for UberX drivers who worked at 
least seven hours in the day. Because taxi driv-
ers tend to work much longer shifts than UberX 
drivers, one possibility is that the longer work 
day reduces productivity, or the tendency to 
work during both slow and busy times of the 
day lowers the capacity utilization rate of taxi 
drivers. For UberX drivers, however, the capac-
ity utilization rates were essentially identical 
for the drivers who worked at least seven hours 
in the day as they were for drivers as a whole. 
This suggests that the exit and entry of UberX 
drivers during the course of the day equilibrates 
the market so that drivers achieve essentially the 
same utilization rate regardless of how long they 
work, or that longer shifts are not the central rea-
son why taxi drivers have lower utilization rates 
than Uber drivers.9

Insofar as matching technology is con-
cerned, Frechette, Lizzeri, and Salz (2015) con-
ducted an elaborate simulation exercise where 
they estimated a dynamic general equilibrium 
model of the taxi market in New York City in 
 2011–2012, allowing for search frictions and 
endogenous driver entry and stopping decisions. 
In one counterfactual simulation, they changed 
the matching technology and assumed that driv-
ers knew the location of the closest passenger. 
Although this is not the same as switching to the 

9 The finding that hours and the capacity utilization rate 
are essentially uncorrelated is consistent with Hall and 
Krueger’s (2015) finding that hours and revenue earned per 
hour are essentially uncorrelated for UberX drivers. 

Uber app, it gives a flavor for the potential role 
of more efficient technology for matching driv-
ers and passengers. This policy was estimated to 
raise the fraction of work time with a passenger 
by 7.2 percent. Table 1 indicated that the capac-
ity utilization rate is 5.3 percent or 3.5 percent 
higher for Uber than taxi drivers in New York. 
So these findings suggest that differences in 
 driver-passenger matching technology can more 
than account for the minor difference in capacity 
utilization rate between taxi drivers and UberX 
drivers in New York City.

An important caveat, however, is that New 
York City is an apparent outlier in that the 
capacity utilization rates of taxi and UberX driv-
ers are much more similar in New York than in 
other cities we have been able to examine. It 
is quite plausible that the high population den-
sity of New York City supports more efficient 
matching of taxis and passengers through street 
 hailing than is the case in other cities. Indeed, 
our results suggest that New York is the only city 
where taxi and UberX drivers achieve a similar 
capacity utilization rate.

Regardless of the reasons for the higher capac-
ity utilization rate of UberX compared to taxi 
drivers, our findings have implications for the 
efficiency of  for-hire drivers. Averaging across 
the five cities with available data (and across the 
two measures), the capacity utilization rate is 38 
percent higher for UberX drivers than for taxi 
drivers. Ignoring fixed costs, if fares are linear, 
this implies that UberX drivers could charge 28 
percent (=  1 − 1/1.38) less than taxis and earn 
the same amount of revenue per hour. In Los 
Angeles, which exhibited the biggest difference 
in capacity utilization, fares could be 37 percent 
lower. It is also worth emphasizing that differ-
ences in utilization rates have implications for 
resources other than passengers and drivers. For 
example, for every mile that taxi drivers in Los 
Angeles drive with a passenger in the car, they 
drive 1.46 miles without a passenger; the com-
parable figure for UberX drivers is 0.56 mile. 
This difference likely translates to greater traffic 
congestion and wasteful fuel consumption.

Lastly, our results bear on the literature on 
occupational licensing. Although occupational 
licensing can provide many benefits for consum-
ers, workers, and society, it could also reduce 
efficiency and distort markets. Occupational 
licensing has grown even in fields where there 
is little public safety or other societal benefit 
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from licensing restrictions. Given that vested 
interests that benefit from occupational licens-
ing (including the jurisdictions that collect 
licensing fees) have made it difficult to repeal 
occupational licensing, one way in which 
inefficient, unnecessary, and counterproduc-
tive occupational licensing can be reduced is 
through disruptive change, such as that brought 
about by a new technology.
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